Task 1: Discovering Special Right Triangles Part A: Isosceles Right Triangles

Exploration: (Each person in the ground	up should do this exploration on
their own paper.) Using graph paper,	draw an isosceles right triangle.
Each person should use a different le	ngth. Mark the right angle.
Label the triangle ABC with <b righ<="" th="" the=""><th>nt angle. What are the</th>	nt angle. What are the
measures of the other two angles?	We call this a
45-45-90 triangle. What is side AB cal	led?
What is side BC called?	What is side AC
called?Us	ing the scale of the graph
paper, what are the measures of sides	AB and BC?
	Use the Pythagorean
Theorem to find the measure of side A	C. Simplify the radical.
Compare and discuss with those in you	ur group. Do you notice
anything special about the hypotenuse	with regard to the legs of your
isosceles right triangles?	
Now we will share with the class. Can	generalize and fill in the
following statements.	
If you know the length of a leg of a 45-45-90 triangle, then the	
hypotenuse is found by	-
If you know the length of the hypoten	use of a 45-45-90 triangle, then
each leg is found by	

Part B: 30-60-90 Triangles

Exploration: (Each person in the group should do this exploration on		
their own paper.) You have an equilateral triangle ABC. Trace it on		
the inch graph paper. Measure the side. What is the measure?		
Draw a perpendicular bisector of side AB. This should		
bisect <acb. intersection="" label="" of="" perpendicular<="" point="" th="" the=""></acb.>		
bisector and side AB point D. Determine the measures of all angles		
in the triangle. What is the measure of <a? of<="" th=""></a?>		
<b? <<="" <acb?="" <adc?="" of="" th=""></b?>		
ACD? Do you see a 30-60-90 triangle?		
What is its name?		
Use a ruler and carefully measure the shorter leg of the 30-60-90		
triangle and the hypotenuse. What are the measures?		
the length of side DC? (simplify the radical) Now we will		
compare your results with the others in class. Can you generalize		
and fill in the following statements?		
In a 30-60-90 triangle, the hypotenuse is the length of		
the shorter leg, the longer leg is the length of the		
shorter leg and the longer leg isthe length of the		
hypotenuse.		